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ABSTRACT .

. New extensions of Phillips' (1959) computa-~
tional stability analysis to several finite~difference
forms yield some interesting explanations of what
is generally observed when nonlinear computational
instability sets in. The one-dimensional shock
equation has been adopted for the analyses, and in
spite of its apparent simplicity it is capable of ‘
describing many features of both stable and unstable
calculations with the full set of atmospheric equations.

The analyses, among other things, are used
to investigate the validity of some ideas which have
been proposed in the past as root causes of non-
linear instability, Among the analyses are cases
in which cascade of energy is permitted in the
spectrum but energy is not trapped in the high wave
numbers, unstable cases in which aliasing is not
permitted, and cases in which the computational

. mode can be a stabilizing factor. The so=-called

""energy-conservation' form is partially analyzed,
and shown to have a stability criterion similar to
the others.
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Introduction

What this paper purports to do is to make a
few extensions to a small body of knowledge to be .
found in the literature about the analysis of sta-
bility of non-linear partial finite-difference equations
commonly used in meteorological research and
operations. The classical paper in stability analysis
is Courant et al. (1928), but Phillips (1959) provided

a departure into the analysis of non-linear equations.

Phillips' work was extended by Richtmyer (1963),
Lilly(1965), Robert (1969), and Robert et al. (1970).
From the standpoint of the effort in hand, Lllly (1965)
does not fit directly in the sequence because he -
implicitly assumed that the time-difference~ratio
converges to the derivative as the time step becomes

vanishingly small. His results are borne out experi-

mentally in stages of calculations where convergence
is at least approximated, but experiments show tha.t
convergence does not universally obtain.

Use of smoothing devices in time, or forward
differences which damp are now the rule, in both
operations and research, which may quantitatively
improve convergence. It is our purpose however
to investigate systems centered in space and time,
because in the linear case such systems are per-

fectly stable, i.e., neither amplification nor damping

arises from truncation error,
Notation

A convenient finite difference notation will be
used, which is described in Robert et al. (1970) and
elsewhere. Briefly, an independent variable used
as a subscript (e. g., x in uy) will denote a partial
finite difference ratio in that variable, involving
values at immediately adjacent grid points. An in-
dependent variable used as a superscrlpt following
a superposed bar (e.g., xin u )w111 denote an
algebraic mean of the variable at two immediately
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adjacent grid points. The prefix '"2" to an operating
independent variable (e. g., 2 in uy, and 4°*) will
extend the action to two grid increments, with the
central value not involved. Attachment of two
operating variables denotes action twice.

Extension of Phillips! analysis

Phillips (1959) dealt with the so-called baro-
tropic equation, ,

8, AT _

ot (x, v) =
where

C= %y
The finite~difference analog he analyzed was

Cet + q’ax. Loy - 1kzy' Cax = 0. (1)
where

C = ¥xx +iyy

The general solution for this .equation is not known.
Phillips, however, found the special solution

V= (Ccos:}sﬂj+Ssin%nj+Ucos nj)sin%‘nk
where

ji=x/a

k = y/A

and A is the distance between adjacent points in a
square array in the two space dimensions, x and vy,
The coefficients C, S, and U are all functions of
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n only, where
n = t/At
"and At is the time step.

Anticipating the analyses of Richtmyer (1963),
Robert (1969), and Robert et al. (1970), we will alter
Phillips' solution in a deceptively simple way by
adding a "V", thus:

' v =(C cos%ﬂj + S sin?;:ﬂ’j + U cos mj+ V) sin £ k..
. - (2)
, Thg}gya.riable, V, here, like C,S, and U, is
dependent on n only. Then, otherwise following
Phillips, we substitute from (2) into (1), equate
coefficients of like components, and obtain

/3

Cat =10 A% S(U-V) (32)
Sat =_ﬁ2 C(U+V) | (3b)
Uzt :Vat = 0 (3C)

The general solutions of (3¢) may immediately
be expressed as

U=U; +Uzgcosmn
(4)
V=U,+U;cosmn

where U,, U,;, U, and U,; are constants depending
on the values of U and V at the two necessary
initial time steps. We next difference (3a) with the
operator ( ):t , using (4), and substitute for S,t
from (3b), obtaining the second-order difference
equation

3
cztzt”'m [(Uina)z"(Uli Uy ¥lc=o0 (5)
The upper signs hold if the central n is even, the

lower if odd.
4
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The criterion for stability of (5) is

0s o5 B w2 waP - (2 U, 1<t (o)

Whether the right hand inequality is satisfied or not,
depends on the magnitude of At, and corresponds to

‘the criterion analyzed by Courant et al. (1928).

Whether the left hand inequality is satisfied, however,
depends only on the balance between the squared
quantities within the square brackets, and not at all
on the magnitude of At, except for the trivial case

of At = 0.

A few interesting points may be made from (6).
First, the computational mode is often blamed for
instability. The computational mode is represented
by the coefficients U, and Uz of the high frequency
component, cos mn, in (4). The constants U, and U,,

on the other hand, represent the low frequency physical

mode. Note that in Phillips'original analysis, V = 0,
and therefore U, = U; = 0. His stability criterion,
therefore, reduces to

0< 2 (AF (u3-ul)<r

Thus, the physical mode in his analysis is the source
of any non-linear instability; the computational mode
is a stabilizing factor.

In the more general criterion (6), however, we
find that the coefficient U,, representing the physical
mode, is a stabilizing factor and U,, representing
a high frequency, and therefore a computational mode,
is a destabilizing factor. Since U, and therefore U,

‘and Uy, are coefficients of the high wave number

component, cos T j, in the solution (2), U, and U,
represent high wave numbers in the solution, and
likewise U, and U, represent low wave numbers.
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The true situation is that high frequencies are
either stabilizing or destabilizing, depending on
their wave number. Similarly, high wave numbers
in the solution are either stabilizing or destabilizing,
depending on their frequency. The true situation is
summarized in Table I. ‘

It is also important to point out that neither the
high frequencies nor the high wave numbers are in

‘themselves unstable. Indeed, as shown 'by (4), they

are perfectly stable, i.e., they are neither amplified
nor damped. The same is true of low frequencies
and low wave numbers. As Table I shows, however,
the analysis indicates that a component with either

high frequency or high wave number {but not both)

causes instability in the middle wave numbers.

In this connection, note that the coefficient C
in (2) multiplies cos % 7 j, which cycles in four grid

.increments. The four- grid-increment wave is exactly

in the middle of the spectrum, in the sense that there
are just as many longer components as there are
shorter.

The role of aliasing

The next question which will be éonsideréd here
is the role aliasing plays. The shock equation,

§—E+u-a—v.‘=0
ot

-]
"

will be used for this investigation. Richtmyer (1963)
showed that the analysis of the shock equation gives
results in all important respects the same as Phillips'

‘analysis of the barotropic equation. Analyses of the

shock equation have often been interpreted in terms of
the effects of the advective terms on stability of calcu-
lations with the more general hydrodynamical equations.
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Table I

Space Low wave High wave
Time number number
U, . Ri U, Ph-Ri
Low irequency
(Physical mode) Stabilizing Destabilizing -
U, Ro Us Ph-Ri
High frequency
(Computational mode) Destabilizing | Stabilizing

Table I, showing schematically the effects on
stability of the spectra extremes. The symbols,
Ri, Ro, Ph, stand for Richtmyer (1963), Robert
(1969), and Phillips (1959), respectively, and show
the parts of the spectra included in their analyses.




Furthermore, the equations for a traveling
gravity wave may be reduced to a single shock
equation, For illustration, consider the system of

equations which describe the dynamics of a gravity .

wave in a2 homogeneous incompressible fluid with a
free surface and slab symmetry:

Su 4 8u 4400 . 9
ot ox 9x ,

%h 1y 8h 4 8u - ¢
ot 9x ox

where x :|.s horizontal distance, t timé, u velocity,

g gravitational acceleration, and h the height of

the free surface. Define a new variable, ¢, by |

¢ = gh
Then
du L Bu ., 8
Bt +u O c . 0
Oc dc du
_— + 2 —_— —_— =
2 ot v dx te ox 0

Addition and subtraction of these two equations
yields

ot ox
8]161-2c) + (u-c) Bgua-ZC) = 0
t x

The last two equations each correspond to one of the
two roots of the linearized gravity wave equation,

and show that influences travel with the two speeds,
u+c and u-c. Nowlet ¢’ =c-¢, where ¢ is the
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space-time average of c. If at an instant u- 2¢”° =0

everywhere, the latter of the pair of equations shows

that the condition holds for all time.

Letting, then, u =2 ¢’ and eliminating u from
the first of the pair, we find

ac” N

g +(3c°+c) = = 0.
L 8t (3e *¢e) ox
Introduction of the variable

U=3c +¢

leads to

BU+u U - o,
ot ox

The simple shock equation, therefore, represents
a whole variety of phenomena described by the more

. general meteorological equations.

~ We will use the finite-difference form which
Richtmyer analyzed,

Uzt = '% (uz)ax

The right-hand member may also be written in two
precisely equivalent other ways:

Upp = -B (WPpy = - (@ uy) = -8F ugy (7)

The third member corresponds to the so~-called
semi-momentum form, which has been used at the
National Meteorological Center in research and later

in operations since 1959,
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We will try as a special solution of (7)

u=Ccos%nj+Ssin%‘nj+Ucos T+ V (8)

" where C, S, U, and V are functions of time (n) only.

This trial solution differs from Richtmyer's in that
he regarded V as a constant, which is a special case
of (8). Now at grid points,

4% = - Ucos nj +V
o o (9)

Uex = o (-Csingmj+Scosdmj) |
- Therefore,
WX g, = 21;. -C(-Ucos mj + V)sin% mj|

: (10)
+S (-Ucos mj + V)cos & mj

But

ol

cos 5 mj +5cos (3/2 1}
(11)
cos Mj. sin $ Mj = ~ % sin 3 mj + % sin (3/2 T3)

cos mj- cosE M) =

These relations are valid whether or not j is an -
integer.

Substitution from (11) into {10) and from (10)
and (8) into (7) gives

Cat cos%nj + Sat sin & mj+ Ugg cos mj + Vge

==— [S({(3U-V)cos % mj + 35S Ucos 3/2 mj
a - (12)

+C(3U+V)sing mj =3 C U sin 3/2 7 j
This will lead to a non-trival solution only if the

components cos 3/2 wjand sin 3/2 7 j can be
related to the other components which appear in

10
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(12), and indeed, at the grid-points, where j is an
integer,

cos (3/2 mj)=cos (3/2 =2)Tmj =cos & mj .
| (13)

- sin & 7 j _

sin (3/2 mj) = sin (3/2 =2) 7 j

In making a direct substitution from (13) into
(12), then, we will have aliased cos (3/2 mj)and
sin (3/2 1j) (components- 4/3 Along ) into
cos & mj and sin 3 Tj (components 4 A long).
We will, however, have done more. The components
4/3 A long interacting with the 2 A components will
generate 4/7 A components according to:

cos Mj-cos (3/2 mj) =% [cos% mj +cos (7/2 mj)]

The 4/7 A components will generate higher wave
numbers, which in turn will generate even higher
wave numbers, and so on, Since the 4/3 A com-
ponent cannot be distinguished from the 4 A com-
ponent with the information at grid points, it is
evident that the higher wave numbers also cannot.
The upshot is that making a substitution from (13) is
valid, but.in doing so we will have aliased a multitude
of high wave numbers into the 4 A components. At
any rate, making the substitution, we get,
1 ,
Cet = + S(U-V)
_ 1
Szt = ~ C(,U +V)

Ust = Vgt = 0

On the other hand, we can in principle achieve
a non-trivial solution of (12) without aliasing, by
modifying the numerical integration procedure. In
particular, we are interested in the solution for a
procedure in which all components shorter than 2 A
are removed immediately as they are generated.

11
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This leads to

o Both numerical procedures may be indicated
in a single set: '

Cat = %—s[%(na)u-v]
Sat = %c[’s(1+a)n+v]

(14)
Ugt = Vet = 0 -

where if § =1, the set describes the former proéedure _

in which we have aliased. If § = 0, the set (14) de-
scribes the latter procedure in which we have removed
all components shorter than 2 A. In the latter case,’
not only have we aliased no components into others,

we have not even included any components which can
be aliased into the ones with which we started. Com-
parison of the stability of the two procedures, there-
fore, will shed considerable light on the role of
aliasing,

We immediately write the solutions for U and V,

U =1U, +UzcosmTn
' (15)
v

Ug +U; cos mn

- Then proceeding as with the derivation of (6), we

find the stability criterion to be

2
Os-(—A—Atgl {lU, +3(1+6)U, )2 (16)
-l3(1+8) U, +U; PP<l

12



Again, the upper signs hold if the centra.l n is even,
the lower if odd.

The nature of the criterion is thus not changed
whether 8=0 (no aliasing) or & =1 (aliasing), although
the balances among the various terms are somewhat
different. Furthermore, the difference in the balance
among the terms, depending on whether 6§=0 or 6§=1,
will favor either stability or instability, depending on
the values of U,, U,, U, and U; relative to each other.

Orszag (1971) has pointed out that, if components
3A(cos 2/3 7j and sin 2/3 7 j) and shorter are con~-

“tinually removed from the calculation, there will be

no components to alias. Application of his idea to(7)

- ~and (8), leads to a numerical procedure in which U
va.nlshes and the stability condition becomes

0= (%‘t)z(Uﬁ-U%)-d.

It should be remarked that (16) with 6= 1, is

‘{dentical to the stability criterion found by Robert

et al. (1970) for the linear equation

f20. + U foy = 0
U=0,+ U; cos Tj + U eos ™n + Us cos TTj'cos-Trn
The identity of the criteria follows from (9) and (15).

The nature of "aliasing"

Let us examine carefully the nature of "aliasing. "
First, consider a function, f(x), given in the region

- 0<x<P. This may be expressed with a Fourier series:

m
f(x) = k 0 k(ak cos 2—1---r-.,§—x+bk sin 2”;")

13




where G, = 3

and O0p = 1 if 'k £0.

The discrete function, oy, has been introduced for
convenience in the following derivations.

We now let £(0) = £(P), and thereby let the
region for which the series is valid be extended to
x=0and x =P, i.e., 0 <x <P, Since the cor-
responding component vanishes, we arbltrarlly set
by = 0.

% Now let the region 0< x siP be divided into
J equa.l intervals, A, and cons1der the situation

' where we as analysts are given f(x) only at the

points bounding the intervals. Let j = x/A , a set
of integers. Note that J = P/A, We will denote the
given discrete set of f(x) by fj, 1=j £J. Then by
substitution,

2Tk 44 sin -———12"1") (17)

2]

‘fJ' =k§o°k(akc°s 7 k J

We immediately note that the subset of coef-
ficients b NJ where N is any integer, do not
contribute fo the sum at the given points, since the
corresponding components vanish there. In other
words, for k=3 N J, sin (2 Tk j/J) is indistin-
guishable from 1ts values when k=0 . We may
therefore ''alias' the former into the latter. We
may do so, however, only so long as our analysis
includes no information about f(x) except at the
given points. The components have not themselves
changed merely because certain information about
f(x) is being withheld from us. Other analysts who
may have more information about f(x) may not
"alias'" such components.

14
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Now, we are given J values of f; , but there
are an infinite number of independent coefficients,
ap and by, in (17). Because of the disparity of
information contained in f; compared with a; and
by, we cannot determine t{'te set of a; and by from
the set of fj . Through the technique of "aliasing, "
however, sums of certain subsets of ay and by can
be determined. Note again, that it is we, the analysts,
who are doing the ''aliasing, ' nothing about the coef-
ficients or their components is changed.

We proceed with the "aliasing'' technique as

follows: For any k'in (17) a pair of integers, m and
n, may always be found such that '

k=m+nlJ
and -3Jsms+37.

Furthermore, for a given k, m and n are unique,
except for m = + £ J. In that case, k may be ex-

p;fessed as

either
K=3T+nJ

or

k==-2J4+(n+1)7

Equation (17) may now be expressed in terms
of m and n in place of k:

+§J ) ® 27(m+ n J)j

.fj = e %71 m nEO n| a@m,n €O°S T
o 2n(m+nJ)j

+bm,n sin 7
(18)
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where
0 = tifm=+%7
' d - . - 1
m =lifm# + 37

The ambiguity about n when m = + % T has here
been resolved by including % of each of the two
possible pairs of m,n . As with ©, o’ has been
introduced for convenience and economy in writing.
The meaning of the limits on the first £ in (18)is
that the summation includes all terms at and inside,
but no terms outside, the limits

«-3Tsm<+37.

Thus for odd J, the first and last terms in the first
sum of (18) are for m= -3 (J -1) andm = + 3 (J- 1),
- respectively. We also note that some of the terms

in the summation for n = 0 imply k < 0, and therefore
imply a subset of ay and by not included in (17).

‘Such aj; and by have been introduced with the-

- condition

a.k = ak

bx =-by

Now, because n, J, and j are integers, and
trigonometric functions are unchanged by a change
in angle by any multiple of 2 ™, we write,

37 ' 2 i
L= -, = mTm
fJ = mE-%;—J . n§O o, .| 2m,n cos T (19)
21m j

+bm,n sin T
and have thus '"aliased'' all wave numbers higher

than 2 J into wave numbers lower than % 7.
Equation (19) is not an identity, however, but only an

16




equality, and its validity is restricted to the set of
integer j . '

Because the sign of the sine changes with a
change in sign of the angle, and the sign of the
cosine does not, (19) may be written:

iy . e | Z_TTJE-J
fj = n§=0 %m %m r?:O On (am,n+ a_m’n)cos
: 2Tmj
Hbppy n=bm glein =7
or,
37 2 Tmi 2 i
e » . i . TTm] \ !
fs = =0 %% m (Am cos Ty + Bm sin 7. ) (20);
v‘&’hgre
00
Am= %9 %n (3m,nt 2.m,n)
- (21)
Bm :nzzo O'n (bm’n - b_m’n )

Through the technique of analysis called
"aliasing, '" we have thus achieved an equation with-
out disparate information content in the set of A
and B,, compared with the set of f;. Just as there
are J independent values of fj given for (20), there
are J coefficients, A, and By, . If J is even, there
are (3J+1)of A, and (3J+1)of B, but two of
.Bm’ B, and B%"J’ do not contribute to the sum
because their corresponding components vanish
for integer j . If J is odd, there are % (T +1) each
of A, and By, , but one of By,, By, does not

. contribute to the sum. B,, and B%J when it exists,
may therefore arbitrarily be set to zero.

We analysts commonly determine only the set
of A, and B,, , because it is determinable from

the set of fj , whereas the set of ap and by is not.

17
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In the march forward in time with a non-linear finite
difference equation such as (7), wave numbers higher
than £J are generated. Indeed their amplitudes can
in principle be determined through the use of the .
predictive equation (7) and relations like (11), although
in practice the number of components doubles each.
time step and it would therefore not be feasible to .
keep an accounting of them for very many time steps
even with today's largest computers.

To relate this discussion to our earlier analysis,
(8) should be interpreted as

- . .
u = kz-i-O O‘k (ak cos Hjl_g + bk s:.n’z—&‘]-)

with k restricted to multiples of $J. If k is so
restricted in the initial cond1t1ons, it will remain 50
restricted throughout the integration, for wave
numbers of components generated by multiplication
are sums and differences of k's, and therefore will
themselves be multiples of $J. ‘

Thus, with
k = m+4n

and -2<m< +2,

then

2 2Tmj 2Tmj

rd m > m

u = n§=0 m “m (Am cos 4 1B, sin p )
where

C'o O’o' = ‘%

0'1 0'1' = 1

0'2 0'2' = ‘%

18
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and
(-]
Am = nE-O‘ ®n (a‘m,n + a‘-m,n)
[}
Bm = nz__.o_ %n (bm,n - b-m,n)
In (8), then,
. (-~}
vV = %Ao = nEO Sn 2,n
@©
C =4 = 3 o (al,n_+ a-1,n )
-]
S = B, = ,,nEO gn (by,n "b-1n)
Us=34 =23 5 op(esn+a )
2 2 2o %n (@z,n -2,n

In determining stability in terms of whether
V, C, S, and U are bounded or not, therefore, we
are not looking at amplitudes ay and by of individual
components, but rather the sums, Am and By, , of
amplitudes of selected subsets of those components.
Aliasing is not anything happening in the calculation,
but rather something which we analysts do when we
group amplitudes into a finite number, J to be precise,
of subsets. Semantically it is nonsense to say that
one component aliases into another, although it may
be acceptable as jargon if the meaning is precisely
understood. More correct semantically is "one
component is aliased (by the analyst) into another. "
In its nature, "aliasing" is not something done by the
components in a calculation, but something which is
done by we analysts in our analysis of the calculation.
It is likewise incorrect to say that "aliasing' causes
instability or any other characteristic of a calculation.

Trapping of energy and instability

An older idea, which is not very current, is
that instability arises from interactions among the

19
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various parts of the spectrum such that there is a
cascade of energy from low to high wave numbers,
with energy trapped in the high wave numbers.

Part of the idea, related to aliasing, is the sup-
position that the grid cannot express wave numbers .

"higher than #J (wave lengths shorter than 2A), and’

there is therefore a barrier in the spectrumat 3 J
near which energy accumulates. We have already
dealt with the question of aliasing, and pointed out
that a non-linear equation generates wave numbers
higher than 3 J. In principle their amplitudes may
be calculated as the integration proceeds. A prac-
tical problem would arise, though, with accounting
for all wave numbers, since the numbers of compo=--
nents double with each time step. . Another aspect - ~

of the problem is that if the wave number accounting

is not kept as the integration proceeds, we analysts
are faced with the fact that we cannot distinguish

‘among the ay {(am,n)and by (bm, n) which make up
‘A, and By, in (21).

.There is no barrier at k = 3 J, but merely
insufficient information in the grid values at a
single time step to distinguish all ax and by from
one another. To demonstrate more precisely,
finite difference systems may be invented which allow
cascade, but in which trapping does not occur.
Consider, for illustration, ‘

uy + T ugx = 0

We again take (8) as the solution. Then

¥ =3Ccosimj+ESsindnj +V

u2X=-i—"(-Csin;§TTj+Scos $mi)

20
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Substitution as before then leads to

C.t = -%- SV

Szt = lcv

Up = -2 Lcs (22)
A

Vet = 0

Following our earlier derivations, we find the
criterion for stability to be

= 42 .
0 < i%gt) (Ug - Ug:)-<1

This criterion differs from the_previoué one (16)
only in that high wave numbers (U, and U;) play no
role. The high wave numbers are active, however,

-as shown by (22). Interactions in the middle of the
- spectrum generate high wave numbers, but energy

trapping does not occur. Instead the two grid in-
crement wave oscillates, if the criterion is satisfied,

 and is therefore perfectly stable.

We grant that this derivation does not prove
that trapping does not o¢cur in more general cases,
but it is a counter example. We have shown that
the idea in the first place has fatal flaws in logic.

Energy conservation and stability

A principle used widely in designing finite
difference forms for atmospheric modeling is due
to Arakawa (1966). Under his basic principle the

finite difference forms conserve a square, such as

energy, when the functional dependence on time is
not discretized. An example of Arakawa's principle
applied to the shock equation is

5 .
gu + ‘%(uj_{,l +uj +uj_1) Uy = 0

ot
21
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which may also be written

Bu
ot

+ 32 (2854 u)upp.= 0

Multlply-mg this equation by 2u, we get, with
a little manipulation, .

+ £ . = =
3 [uJ"'% uj_% u ]x 0

If this is summed over j, from 1lto J,

9 J - 1
5t 21 St 3a bupa Uy (Upy tup)

~u; u, (uy +u,)l

and, if u, = uy = 0, or if

2

uj = uj+.]', jzl uj is conserved.

~ Of course in the larger atmospheric calcula-
tions, of which the shock equation merely represents

"some features, the functional dependence on time

must be discretized, and therefore the conservation
theorems are not satisfied. Nevertheless, it is
typical of such calculations that the discrete approxi-

.~ mations to the time derivative are highly accurate

during a considerable period of the integration in
time. Experience has shown that during such period,
difference systems based on Arakawa's ideas do in-
deed conserve energy (or whatever other square is
designed for conservation) to a correspondingly high

. degree of approximation. This can be a great

advantage, especially in certain basic researches
such as general circulation experiments, where it
is often more important for the numerical model to
copy the atmosphere in conservation of its energy
and other fundamental quantities, than in ordinary

accuracy of its evolution from one state to another.
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The conservation argument cannot, however, as
has sometimes been supposed, be used as an argument
for stability. Using the shock equation as an example,
if u® were indeed conserved, it is evident that u would

be bounded, and therefore the calculation would be stable. .

When, however, the functional dependence on time is
discretized, u® is not conserved. Rather than u?,
what is conserved is Un+d Un.t o, with centered time-
differences:
3
: u- 1 u-: - )
- (j:l %j,ntd %jon-t g

1 [ ,
+ 3~ LYr41,n 97,0 (8F4,n * Us,n)

“U,n Yo,n (ul,n+ uo,;n) ]

‘Let us seek stability conditions for
ust + 5 (2 8¥F +u)uyx = O
in the case of the restricted spectrum (8). Following

the earlier procedure of substituting and equating
coefficients, we find

: 1 ‘ 4
C2t=—A—S(%U-V)

A (23)
Upt = -i_ 3CsS
Vet = 0

Again, we may immediately write the solution for V,
vV = U, + U, cos Tn. -

Otherwise, however, the set can apparently not be
reduced to a linear form in the general case.
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Special solutions, however may be found. For
example, '

C =3 (l+cosnn)C’
S =2 (1 <=cosmn) S°

where C’ and S are not restricted. This is the solu-
tion for any set of initial conditions with the restriction,

Note that S is then zero for all even n, and C for
all odd n . With this restriction,

Uzt = 0, and
- U=U,+Uz cosmn

and the stability condition is
2

At 1 v 7
0 s 3 [ (vot 3U3)-(U2i§U1)J<1

again with the upper signs holding for even n, the
lower for odd n. This condition is only a small
modification of (16), depending again on the same
kind of balance among U,, U,, U, and Us.

In principle, the general stability conditions
for the set (23) may be found through numerical
experiment, if we modify our notion of stability
somewhat. Instead of solutions being bounded for
all n, we will 'accept as stable solutions those in
which the solution does not exceed in magnitude a
pre-selected large value, A%, during a numerical
" integration to a pre-selécted large value, N, of
n-, i.e.,

lcl Isl |ul s a2
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'E® =C? +82+2 U% > 1000(A/AL)PR

for
O0<n<N.

In practice the calculation, and therefore the stability
condition, depend on eight parameters, viz, , the two
initial values each of C, S, U, and V. A'thorough
investigation not therefore being practical, we con-
ducted a limited one.

We let N = 8640 (corresponding to 60 days of
10 minute time steps) and called a run unstable if

g . &

before-n reached N. It may ea.sﬂy be demonstrated
that E® is conserved if the difference ratios on the
left hand sides of (23) are replaced by their cor-
respondmg derivatives. Equations (23), on the other
hand, conserve as they stand the quantity

(Cn+1‘ Cn + Sn+1 Sn +2 Un-i-l ’ Un)

which was calculated at the end of each run and com-~
pared with its initial value as a check on the machine
program. For one case we let N = 52560 (365 days of
10 minute steps) as a check on the appropriate magni-
tude for N,

Figure 1 shows a typical printout. It is for one
experiment, consisting of 21 x 21 = 441 runs with (23).
The printout is in the form of a table, with arguments .
U, and U,. The vertical argument is U,, at intervals
of 0.1x (A/At), from zero at the top to two at the
bottom. The horizontal argument is U, , at intervals

“of 0.1x (A/At), from zéro at the left to two at the

right. .In the experiment shown, the initial values
of C, S, and U were all 0.1x (A/At), and their
values at the second time step were calculated with
a forward time step.
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The region between the two lines is the stable
region. The lines.were drawn connecting points
representmg runs which reached 8640 time steps
without E° exceeding 1000 x (A/At); and at the same
time enclosing all other such points. The figure shows

. 2 .
s(—AA—t) (vi-ud) <1 (24)

to be an approximation to the stability criterion. The
upper straight diagonal line is 0.1x (A/At) away
from the left hand critical condition,

v0=U°-U

and the lower line is 0.1x (A/At) away from the’
right hand critical condition,

COICELD

Thirty-two other experiments of 44] runs each
were conducted, and sixteen, in which the initial

.values of C, S, and U were 0.1x (A/At) or smaller,

exhibited (24) as an approximation to the stability
criterion. For the other sixteen, in which the initial
C, S, andU were 0.5 x (A/At)or 1.0 x (A/At) the
stable regions on the printouts disappeared or became
very small,

Concluding remarks

Analyses such as performed here cannot
describe all problems of stability in numerical

.atmospheric models. However, in a sense they

set necessary conditions for stability. Because

it is so trustworthy in practice, we overlook some-
times that the stability analysis of Courant et al.
(1928) is also severely limited, and sets only neces-
sary conditions for stability. Sufficient conditions
for stability of the nonlinear equations have as yet
not been defined.
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These stability analyses, when applied to
large calculations with a full spectrum, should not
be interpreted only in terms of the initial conditions,
which are usually smooth in space and time, and
which therefore usually satisfy the conditions.for
stability derived here. The analyses are much less
helpful than they would be if they were to set the
initial conditions.” Because of the severely restricted
spectrum used, the analyses only tell us that certain
conditions must not be violated during the integration
if the variables are to remain bounded.

In large calculations, high-wave numbers and
high frequencies usually have small amplitudes near

~ the beginning of the calculation, but through nonlinear _

interactions they grow as the integration proceeds..

We know little about the growth rates, other than
what we observe in particular integrations with
particular sets of difference equations and particular
sets of initial data. The analyses do tell us, however,
that feedback of high-wave numbers and high frequen-
cies must be suppressed. This is commonly done,
correctly, with either dissipative terms or with
smoothing devices on variables in the equations, or
in the case of high frequencies by adoption of forward
time differences, or time-smoothing devices. The
analyses tell us the nature of what we must do, but
not knowing a priori the growth rates of high-wave
numbers and high frequencies, we are unfortunately -
left to cut-and-try on a case-by-case basis in estab-
lishing quantitatively what to do.
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Figure 1

One of the computer outputs from a program
designed to experimentally analyze the so-called
energy conservation finite difference form of the
shock equation.,
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